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Abstract

Purpose of review—WHIM syndrome (WHIM) is a congenital immune deficiency with
characteristic clinical features that include: susceptibility to human papilloma virus infection induced
warts, condyloma acuminata and carcinomas; neutropenia, B cell lymphopenia and
hypogammaglobulinema related recurrent infections; and bone marrow myelokathexis characterized
by myeloid hyperplasia and apoptosis. The purpose of this report is to review diagnosis and clinical
management, and to highlight new findings about the genetic and biochemical abnormalities that
cause WHIM.

Recent findings—Specific mutations identified in WHIM patients include heterozygous C-
terminus deletional mutations of portions of the intracellular carboxy terminus of the chemokine
receptor, CXCR4. WHIM leukocytes have enhanced responses to SDF1, the cognate ligand of
CXCR4. Enhanced activity of CXCR4 delays release of mature neutrophils from the bone marrow
resulting in neutropenia and senescence with apoptosis of mature neutrophils retained in the marrow.
Recent reports of 2 patients with WHIM who do not have detectable mutations of CXCR4, but whose
cells are hyper-responsive to SCF1 raise the possibility that there is more than one genetic basis for
WHIM. One patient had low levels of G-protein receptor kinase 3 (GRK3) protein and mRNA, and
the functional hyperactivity response to SDF1 was corrected by forced gene transfer mediated excess
expression of GRK3, implicating defective GRK3 phosphorylation mediated downregulation of
CXCR3 as the cause of WHIM in that patient.

Summary—The main subjects reviewed in this chapter include a detailed characterization of the
clinical presentation, diagnosis and treatment of WHIM; advances in understanding the genetic basis
of WHIM; and review of new studies which delineate the biochemical consequence of WHIM
mutations as resulting in hyperfunction of CXCR4 in response to SDF1.
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Introduction

WHIM syndrome (WHIM) is an autosomal dominant inheritance immune deficiency that in
most kindreds is caused by a gain in function mutation (hyperactivity with failure to down
regulate) in CXC chemokine receptor 4 (CXCR4). The name of the syndrome is an acronym
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derived from major features of the disorder that include, but are not limited to Warts,
Hypogammaglobulinemia, recurrent bacterial Infections and Myelokathexis (apoptosis of
mature myeloid cells in the marrow) [1-6]. Most, but not all, patients with WHIM are
heterozygous carriers of mutations of CXCR4 that cause partial truncations of the
carboxyterminal segment of this receptor. When the CXCR4 mutation connection to WHIM
was first identified in 2003, it was considered to be the first example of a human disease
mediated by dysfunction of a chemokine receptor [7]. In the past two years significant new
information has been published about WHIM that provides an increased understanding of
CXCR4 signaling. In addition there have been recent reports about clinical problems in patients
with WHIM that has added to our understanding of the clinical management of this disorder.
These new findings of mechanisms and clinical features of WHIM will be reviewed.

A first step toward understanding the role of CXCR4 in WHIM requires description of
structural features of this receptor. CXCR4 is a 352 amino acid member of the G-protein-
coupled receptor (GPCR) superfamily, with specificity for the chemokine, stromal cell-derived
factor 1 (SDF1; also known as CXCL12) [8-11]. Mice genetically engineered to lack either
SDF1 or CXCR4 have similar defects of B-cell lymphopoiesis, bone-marrow myelopoiesis
and cardiac septum formation that is associated with a late gestation lethal phenotype [12,
13]. Transcription of CXCR4 is regulated positively by nuclear respiratory factor-1 (NRF-1)
and negatively by Ying Yang 1 (YY1) [14-16]. SDF1 binding to CXCR4 leads to activation
of pathways that include G-protein mediated and G-protein independent signaling [17-22].
Understanding the regulation of expression and signaling pathways of SDF1 and of its cognate
receptor, CXCR4 is likely to be an important area of additional discovery of clinical
significance in the next few years. As one example of an area ripe for assessment, we do not
know why WHIM patients are particularly susceptible to infection with human papilloma virus
(HPV), which in these patients not only causes warts, but also results in condyloma acuminata
and dysplastic lesions of the genital-anal mucosa that often progresses to frank carcinoma.
Since SDF1 and CXCR4 are present in skin fibroblasts and keratinocytes, respectively, and
may affect proliferation of keratinocytes, it is not far-fetched to speculate that HPV infection
may impact on regulation of expression or function of SDF1 and/or CXCR4 and that this
balance is disturbed in WHIM to favor growth of HPV with proliferation and transformation
of epithelium.

Specific mutations of CXCR4 identified in some families with myelokathexis include
heterozygous mutations of R334X, S339fs342X, E343X, and G335X, all of which are located
in and cause truncations of the intracellular carboxyterminus of CXCR4 [7,23,24]. However,
as will be discussed in the section on Genetics, there may be other types of genetic lesions
affecting CXCR4 signaling that can cause WHIM.

Clinical phenotype

The clinical features of 37 WHIM patients have been reported [1,3,6,7,24-39]. Pooling
information from these diverse reports, the frequency of specific clinical features of WHIM at
first presentation for warts, hypogammaglobulinemia, and neutropenia was 78.6% (22/28),
89.6% (26/29), and 91.7% (33/36) of patients, respectively. The clinical features which
manifest in a particular patient and the age of initial diagnosis is variable. All patients from
early childhood suffered from recurrent infections that include pneumonias, sinusitis, cellulitis,
urinary tract infection, thrombophlebitis, omphalitis, osteomyelitis, deep soft tissue abscesses,
and skin infections. Common pathogens include, but are not limited to, Haemophilus
influenzae, Streptococcus pneumoniae, Klebsiella pneumoniae, Staphylococcus aureus, and
Proteus mirabilis. Recurrent pneumonias may in some cases lead to severe bronchiectasis
(Figure 1). Those patients who develop bronchiectasis may also suffer from chronic infection
with Pseudomonas aerugenosa or Burkhoderia cepacia. The immune deficiency in WHIM is
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manifested primarily by neutropenia, B cell lymphopenia and hypogammaglobulinemia. As
expected, WHIM patients have greater problem with bacterial infections (particularly with
encapsulated organisms) than with virus infections. Patients with WHIM who are appropriately
managed with granulocyte colony stimulating factor (G-CSF) and periodic administration of
intravenous gamma globulin (IVIG) appear to have little problem resolving infections with
influenza, parainfluenza, herpes simplex, herpes zoster, and common respiratory viruses.
However, there is likely a problem with control of Epstein-Barr Virus, because there are two
reports of patients with WHIM syndrome developing EBV-related lymphoproliferative
disorders [33,38].

WHIM patients with warts characteristically have numerous warts on hands, feet and trunk.
They may also have genital and anal condyloma acuminata, and in female patients significant
cervical and vulval dysplasia. Mucosal lesions often progress to frank carcinoma. All of these
lesions are associated with human papilloma virus (HPV) infection. The susceptibility to HPV
and the resultant degree of pathology from this pathogen is very much out of proportion to the
fact that there is not much increase in general susceptibility to virus infection in WHIM.
Furthermore, the degree of HPV related disease in WHIM is even highly disproportionate to
the level of problems with HPV seen in severe T lymphocyte immunodeficiency disorders such
as severe combined immune deficiency where there is a very significant increased
susceptibility overall to infection with viruses. Thus, there appears to be an unique and specific
failure of immune control of progression of HPV infection in WHIM. It is possible to speculate
that the C-terminal truncating mutations of CXCR4 in WHIM which enhance activity of the
host CXCR4/SDF1 axis in skin and mucosa may play a role in facilitating HPV infection that
is detrimental to host defense.

Hematological findings

The bone marrow of WHIM patients has a marked hyperplasia with many cells demonstrating
characteristic abnormalities of cytoplasmic vacuolization, hypersegmented nuclei, and
chromatin hypercondensation consistent with apoptosis [3]; a histologic pattern that in the older
medical literature has been termed myelokathexis. Paradoxically, this increase of myeloid
elements that includes excessive numbers of apoptotic neutrophils in the bone marrow of
patients with WHIM is associated with a very significant decrease of absolute counts of
neutrophils in the peripheral blood. The clinical characteristics of the neutropenia observed in
WHIM patients differs from that in some other types of congenital neutropenia in that acute
infection, stimulation with granulocyte- and granulocyte-monocyte-colony stimulating factors
(G-CSF, GM-CSF), epinephrine, or glucocorticoids induce a prompt release of neutrophils
from the marrow that within hours may reach normal levels [32,40]. This clinical observation
together with the histological features of the bone marrow has suggested that the neutropenia
might be a defect in marrow release of neutrophils rather than a production defect, though until
recently definitive delineation of mechanism was lacking.

A very significant B cell lymphopenia is a common finding, and many patients may also
manifest a decrease in numbers of T lymphocytes. However, the relative proportions of the
main T lymphocyte subsets appears normal, and in vitro tests of T lymphocyte proliferation to
mitogens are normal [24,34,37]. B-lymphocyte counts in patients with WHIM are profoundly
depressed with a particularly severe reduction of circulating CD27* memory B cells that affect
both un-switched (IgD*) and switched (IgD") CD19 B lymphocytes [24]. The significant
hypogammaglobulinemia most frequently involves 1gG, but may also affect IgM. A likely
clinical manifestation of this is the observed recurrent sinusitis, upper respiratory infections
and pneumonias with encapsulated bacteria and the development of significant bronchiectasis
in a subset of patients (Figure 1). Patients are clearly helped by treatment with IVIG. However,
WHIM patients do have significant measureable responses to a clinically beneficial level to
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active immunizations indicating that the defect in humeral immunity is not complete [7,24,
34]. More specifically, it has been reported that a WHIM patient immunized with tetanus-
toxoid vaccine initially produced normal levels of specific antibody, but serum levels of anti-
tetanus-toxoid immunoglobulin became undetectable after a year [24]. This suggests that
WHIM patients have normal capacity to produce specific antibody against antigens, but fail to
maintain antibody production, which is manifested by a reduction of circulating CD27*
memory B cells.

The combination of recurrent bacterial infections and recalcitrant warts are a reliable sign of
a primary immune deficiency that may include WHIM in the differential diagnosis, but is not
itself pathognomonic of WHIM. When initial medical workup of immune function also detects
neutropenia, lymphopenia and hypogammaglobulinemia, the diagnosis of WHIM should be
strongly considered and the next step should be evaluation of a bone marrow biopsy. If that
biopsy shows any hint of myelokathexis, then sequencing of the CXCR4 gene should be
performed looking for a characteristic mutation. G-CSF treatment is not only clinically
beneficial, but a rapid response within hours to injection of relatively low doses of G-CSF can
assist in providing additional supporting evidence for a diagnosis of WHIM. As will be
discussed below, there appear to be patients with all the clinical features of WHIM in whom
mutations of CXCR4 cannot be found, indicating that there may be other genetic causes of
WHIM. Thus, a patient presenting with most features of WHIM including myelokathexis may
be given a presumptive diagnosis of WHIM for purposes of clinical management, even if
sequencing of CXCR4 finds no mutation.

Clinical diagnosis of WHIM is also made more difficult by the fact that some patients may
only manifest a subset of the expected features of this disorder. There are a few patients, usually
younger patients, with WHIM who at time of diagnosis may have few or no warts. Conversely,
it is important to note that the majority of patients presenting with severe widespread warts,
but lacking other clinical features of WHIM likely have other cause for their warts and do not
have WHIM. Also, many WHIM patients have a family history suggesting autosomal dominant
inheritance of the features of the disorder.

Treatment and Prognosis

The prognosis for WHIM patients depends in part on early recognition of the disorder, with
aggressive medical intervention to reduce the frequency of recurrent bacterial infections and
to detect and extirpate in the early stages any HPV lesions that appear to be dysplastic or
malignant. While both G-CSF and GM-CSF have been used to increase and maintain
circulating neutrophil counts in the normal range, G-CSF is probably the preferred and best
tolerated agent. The mechanism of action may in part involve, though though likely is not
limited to, elevating neutrophil counts in a positive autofeedback loop that involves enhanced
release of neutrophil elastase [39,41-43]. Neutrophil elastase cleaves SDF1 and CXCRA4, thus
reducing the activity of the SDF1/CXCR4 axis and thus enhancing release of mature
neutrophils from the bone marrow to the peripheral blood [44,45]. Dosing of G-CSF should
be determined empirically for each patient, and even then adjustments may be needed
periodically (in children as they grow; or in adults because of other factors). Reasonable starting
dosing is human recombinant G-CSF at 3 micrograms per kg administered subcutaneously
every other day, with a goal to adjust dosing to keep absolute neutrophil count in the circulation
at or above 1500 per microliter at the nadir of the alternate day.

With hypogammaglobulinemia, administration of IVIG is effective at decreasing risk of
infections [1,36]. Dosing may be every six weeks with a goal to achieve levels at or above the
lower limit of the laboratory reference normal at nadir. It has been reported that the
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hypogammaglobulinemia may improve following treatment with G-CSF [32]. For that reason,
it is important to periodically evaluate the nadir and adjust 1VV1G dosing. Use of prophylactic
antibiotics in WHIM patients has not been evaluated statistically, but it is not unreasonable to
extrapolate from studies in other primary immune deficiencies, neutropenias or
hypogammaglobulinemic states to support the use of antibiotic prophylaxis. A suggested
regimen is daily trimethaprim-sulfamethoxazole to cover a broad range of encapsulated
bacteria that include pneumococcus and hemophilus together with anti-staphylococcus
activity. There is a risk, particularly in children that in some individuals the trimethaprim-
sulfamethoxazole may adversely impact the neutropenia. Extended spectrum oral
cephalosporin is an alternative.

Early aggressive diagnostic and therapeutic intervention for any suspected infection is
essential. Pneumonias are common, and a subset of patients may develop significant
bronchiectasis (Figure 1). Patients with extensive bronchiectasis benefit from advice and
management by a pulmonary specialist because many of the interventions designed to manage
patients with cystic fibrosis can be of benefit to these patients.

Mortality from infection in WHIM appears to be low in closely managed patients that are on
G-CSF, IVIG and prophylactic antibiotics, but lethal meningitis and septicemia have been
reported. However, cancer is a significant cause of premature mortality in WHIM syndrome.
The role of HPV and carcinoma will be discussed just below. Given the small number of
reported cases of WHIM syndrome in the literature overall, it is highly significant that there
are two cases of EBV B cell lymphomas reported [33,38] where one patient died from this
lymphoproliferative disorder [38].

WHIM patients with significant HPV lesions of mucosal and transitional areas of skin are at
very significant risk of invasive destructive and eventually metastatic carcinomas. These HPV
related carcinomas are a significant cause of morbidity and premature mortality in WHIM.
These lesions may be recurrent; and extraordinary clinical vigilance is required with frequent
assessment by a dermatologist and in female patients by a gynecologist. There must be a low
threshold for biopsy of any suspect pathology with full surgical removal of any malignant or
pre-malignant lesions. The availability of recombinant protein vaccines effective against those
HPV serotypes responsible for causing mucosal cancers raises the question of whether early
vaccination might help to reduce HPV related malignancies in patients with WHIM. However,
the B cell defect in these patients may reduce the effectiveness or duration of protection, and
may require periodic re-immunization. This is an issue that should be studied in a prospective
clinical protocol.

The first report of the heterozygous carriage of a mutation in CXCR4 as the basis of autosomal
dominant WHIM was reported in 2003 [7]. Since then results of sequencing have been reported
for 26 patients with clinical features of WHIM (Table 1) [1,3,6,7,24-39], though in two of these
patients no specific mutation was identified [25,46]. One of these mutations R334 X was found
in 15 patients, the 4 other mutations being represented in only 2-3 each of the remaining
patients. It is of note that all of the reported mutations in CXCR4 found in 24 WHIM patients
result in a premature stop codon that causes a truncation of the cytoplasmic C-terminus portion
of the receptor. The C-terminal region of CXCR4 is known to contain canonical
phosphorylation sites that by sequence homology are likely targets of G-protein coupled
receptor kinases (GPRKS) involved in ligand-induced GPCR endocytic internalization from
the cell surface, a physiological negative feedback mechanism [47]. As will be discussed in
greater detail below in the section on Biological Dysfunction, this type of lesion would be
predicted to enhance and prolong the function of CXCR4 upon stimulation with SDF1, leading
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to a dominant gain of function affect as an explanation for the observed autosomal dominant
inheritance.

Biological dysfunction

SDF binding to CXCR4 with SDF1 triggers a cascade of processes common to GCPRs [48]
that includes conformational change in the receptor [49] and the uncoupling from G-proteins
that induces a host of downstream effects. The uncoupling of G-proteins is associated with
activation of the heterotrimeric Gapy-protein complex that mediates signal transduction and
induces downstream cellular responses [50]. At the same time negative feedback loops are
activated which include induction of GPRK and protein kinase C mediated phosphorylation
of the C-terminus cytoplasmic domain of CXCR4. This phosphorylation results in binding of
B-arrestins to CXCR4 and interaction with C-terminal sequences, resulting in down regulation
through endocytic internalization of receptor and desensitization to ligand stimulation [22,
51,52].

It is known that ligand blocking antibody to CXCR4 or the specific small molecule inhibitor
of CXCR4, AMD3100, induces mobilization of neutrophils from bone marrow [53,54],
suggesting that CXCR4 plays a role in retention of mature neutrophils in the marrow. It has
been reported that both neutrophils and T lymphocytes from patients with WHIM that have C-
terminal truncations of CXCR4 demonstrate enhanced chemotactic responses to SDF1 [24,
25,55]. These findings raised the possibility that the enhanced function of WHIM mutant
CXCR4 might be responsible for retention of otherwise mature neutrophils in the bone marrow
beyond the time when they should be released into the circulation. Recently, this hypothesis
was tested in a NOD/SCID mouse human hematopoietic stem cell xenograft model. In that
study normal human CD34* hematopoietic stem cells were forced to express the WHIM R334X
mutant CXCR4 by gamma retrovirus mediated gene transfer and transplanted into the NOD/
SCID mouse. Neutrophils arising from the R334X CXCR4 transduced human stem cells in the
marrow of the NOD/SCID mice, demonstrated significantly decreased release from the
xenograft marrow into the circulation than controls, and the WHIM R334 X neutrophils retained
in the marrow demonstrated increased rates of apoptosis [56]. However, when the normal
human CD34" hematopoietic stem cells forced to express WHIM R334X mutant CXCR4 were
instead differentiated in vitro into mature neutrophils in tissue culture there was no
enhancement of apoptosis compared to controls. These experiments show that increased
number of apoptotic mature myeloid cells in WHIM is secondary to a failure of marrow release
of neutrophils. The mature neutrophils in WHIM are instead retained in the marrow past their
normal time of release where they progress to senescence and apoptosis in that location rather
than in the peripheral tissues or spleen as normally the case.

In related studies, when hematopoietic tissue culture cells or primary human CD34" cells were
forced to express WHIM R334 X mutant CXCR4 by gene transfer, the cells exhibited enhanced
chemotactic and calcium efflux responses to SDF1, and defects in down regulation related
internalization of receptor from the cell surface [57]. All of these findings are consistent with
the well established role for the C-terminal cytoplasmic domain of GPCRs, including CXCR4,
in regulating ligand mediated desensitization [58] and endocytic internalization/recycling of
receptor [7,24,57]. Recent detailed biochemical studies suggest that C-terminal truncation of
CXCR2 may actually result in enhanced binding of B-arrestin to regions of the receptor other
than the missing C-terminus, but that paradoxically in the absence of the usual additional
interactions between R-arrestin and the missing critical C-terminal regions the result is
prolonged activation of the receptor with failure to internalize receptor via endocytosis [55].

Additional evidence connecting a decrease in ligand mediated downregulation of CXCR4 as
a cause of WHIM comes from detailed studies of 2 unrelated patients with all of the
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characteristic clinical features of WHIM who lack detectable mutations in CXCR4 (Table 1).
Cells from these patients demonstrate hyperactive responses to SDF1 [25,46]. Furthermore, in
cells from one of these two patients there appeared to be a marked decreased of GRK3 protein
and mRNA [25,46]. Gene transfer mediated expression of GRK3 in this patient’s fibroblasts
or leukocytes restored to normal levels the excessive chemotactic response and the ligand
mediated internalization of CXCR4 in response to SDF1. This demonstrates that the critical
shared biochemical feature common to WHIM patients with C-terminal truncating mutations
of CXCR4 and to those WHIM patients who lack detectable mutations in CXCR4 is the gain
in function hyperactivity of CXCR4 in response to SDF1. This provides strong supportive
evidence that WHIM may be broadly characterized as an immune deficiency disease of
functional hyperactivity of CXCRA4.

Conclusions

WHIM is an inherited immune deficiency characterized by neutropenia, B cell lymphopenia,
myelokathexis, hypogammaglobulinemia, recurrent infections, and a marked susceptibility to
human papilloma virus infection with resultant warts, condyloma acuminata and invasive
mucosal carcinomas. There is emerging evidence that WHIM syndrome results from functional
hyperactivity of CXCR4. The great majority of patients have a heterozygous gain in function
C-terminus truncation mutation of CXCR4, though there may be patients manifesting WHIM
due to alternate genetic causes of increased activity of CXCR4. The pathophysiologic
mechanism by which increased activity of CXCR4 affects B cell number and function is not
known, nor is there yet an understanding of how this leads to enhanced susceptibility to HPV
infection. Recent studies suggest that enhanced activity of CXCR4 on mature neutrophils in
the bone marrow may prevent their release from the marrow, resulting in peripheral blood
neutropenia. The normal progression to senescence of excess neutrophils retained in the
marrow is likely responsible for the increased numbers of apoptotic neutrophils in the bone
marrow observed histologically as myelokathexis. Current clinical management of WHIM
includes treatment with G-CSF, IVIG, prophylactic antibiotics, and aggressive surveillance for
and surgical extirpation of dysplastic skin and mucosal HPV related lesions. Given that many
of the clinical problems affecting WHIM may be a consequence of hyperfunction of CXCR4,
we propose that chronic treatment of WHIM patients with a potent inhibitor of CXCR4 function
such as Plerixafor (MOBOZIL®; AMD3100) should be studied in an experimental clinical
protocol.
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Figure 1. Severe Bronchiectasis in WHIM Syndrome

This is a computerized axial tomography radiologic exam of the chest of an adult patient with
WHIM syndrome. This patient had frequent pneumonias and sinusitis since childhood, and
demonstrates development of a significant degree of bilateral bronchiectasis.
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Table 1
Results extracted from a review of the literature of sequencing CXCR4 in 26 patients with clinical features of WHIM

syndrome.

Site of Mutation in CXCR4 Protein # of Patients with Mutation

R334X 15
G336X
S338X
$339fs342X
E343X

N NN N WN

No mutation
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